A construction for recursive linear orderings

Journal of Symbolic Logic 56 (2):673-683 (1991)
Abstract
We re-express a previous general result in a way which seems easier to remember, using the terminology of infinite games. We show how this can be applied to construct recursive linear orderings, showing, for example, that if there is a ▵ 0 2β + 1 linear ordering of type τ, then there is a recursive ordering of type ω β · τ
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,978
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-01-28

Total downloads

3 ( #292,614 of 1,100,972 )

Recent downloads (6 months)

3 ( #115,721 of 1,100,972 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.