Brussels-Austin nonequilibrium statistical mechanics: Large poincar´e systems and rigged Hilbert space

Abstract
The fundamental problem on which Ilya Prigogine and the Brussels- Austin Group have focused can be stated briefly as follows. Our observations indicate that there is an arrow of time in our experience of the world (e.g., decay of unstable radioactive atoms like Uranium, or the mixing of cream in coffee). Most of the fundamental equations of physics are time reversible, however, presenting an apparent conflict between our theoretical descriptions and experimental observations. Many have thought that the observed arrow of time was either an artifact of our observations or due to very special initial conditions. An alternative approach, followed by the Brussels-Austin Group, is to consider the observed direction of time to be a basic physical phenomenon due to the dynamics of physical systems. This essay focuses mainly on recent developments in the Brussels-Austin Group after the mid 1980s. The fundamental concerns are the same as in their earlier approaches (subdynamics, similarity transformations), but the contemporary approach utilizes rigged Hilbert space (whereas the older approaches used Hilbert space). While the emphasis on nonequilibrium statistical mechanics remains the same, their more recent approach addresses the physical features of large Poincar´.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,374
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

20 ( #81,893 of 1,096,875 )

Recent downloads (6 months)

1 ( #273,368 of 1,096,875 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.