A non-deterministic view on non-classical negations

Studia Logica 80 (2-3):159 - 194 (2005)
We investigate two large families of logics, differing from each other by the treatment of negation. The logics in one of them are obtained from the positive fragment of classical logic (with or without a propositional constant ff for “the false”) by adding various standard Gentzen-type rules for negation. The logics in the other family are similarly obtained from LJ+, the positive fragment of intuitionistic logic (again, with or without ff). For all the systems, we provide simple semantics which is based on non-deterministic four-valued or three-valued structures, and prove soundness and completeness for all of them. We show that the role of each rule is to reduce the degree of non-determinism in the corresponding systems. We also show that all the systems considered are decidable, and our semantics can be used for the corresponding decision procedures. Most of the extensions of LJ+ (with or without ff) are shown to be conservative over the underlying logic, and it is determined which of them are not
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    5 ( #178,728 of 1,088,388 )

    Recent downloads (6 months)

    1 ( #69,601 of 1,088,388 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.