Strong Cut-Elimination, Coherence, and Non-deterministic Semantics

An (n, k)-ary quantifier is a generalized logical connective, binding k variables and connecting n formulas. Canonical systems with (n, k)-ary quantifiers form a natural class of Gentzen-type systems which in addition to the standard axioms and structural rules have only logical rules in which exactly one occurrence of a quantifier is introduced. The semantics for these systems is provided using two-valued non-deterministic matrices, a generalization of the classical matrix. In this paper we use a constructive syntactic criterion of coherence to characterize strong cutelimination in such systems. We show that the following properties of a canonical system G with arbitrary (n, k)-ary quantifiers are equivalent: (i) G is coherent, (ii) G admits strong cut-elimination, and (iii) G has a strongly characteristic two-valued generalized non-deterministic matrix. In addition, we define simple calculi, an important subclass of canonical calculi, for which coherence is equivalent to the weaker, standard cut-elimination property.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,658
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

2 ( #553,718 of 1,725,989 )

Recent downloads (6 months)


How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.