Martin-Löf complexes

Annals of Pure and Applied Logic 164 (10):928-956 (2013)
Abstract
In this paper we define Martin-L¨of complexes to be algebras for monads on the category of (reflexive) globular sets which freely add cells in accordance with the rules of intensional Martin-L¨of type theory. We then study the resulting categories of algebras for several theories. Our principal result is that there exists a cofibrantly generated Quillen model structure on the category of 1-truncated Martin-L¨of complexes and that this category is Quillen equivalent to the category of groupoids. In particular, 1-truncated Martin-L¨of complexes are a model of homotopy 1-types. In order to establish these facts we give a proof-theoretic analysis, using a modified version of Tait’s logical predicates argument, of the propositional equality classes of terms of identity type in the 1-truncated theory
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,304
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-09-14

Total downloads

10 ( #137,947 of 1,096,394 )

Recent downloads (6 months)

3 ( #87,122 of 1,096,394 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.