Type Theory and Homotopy

of type theory has been used successfully to formalize large parts of constructive mathematics, such as the theory of generalized recursive definitions [NPS90, ML79]. Moreover, it is also employed extensively as a framework for the development of high-level programming languages, in virtue of its combination of expressive strength and desirable proof-theoretic properties [NPS90, Str91]. In addition to simple types A, B, . . . and their terms x : A b(x) : B, the theory also has dependent types x : A B(x), which are regarded as indexed families of types. There are simple type forming operations A × B and A → B, as well as operations on dependent types, including in particular the sum x:A B(x) and product x:A B(x) types (see the appendix for details). The Curry-Howard interpretation of the operations A × B and A → B is as propositional conjunction and..
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA
    S. Awodey & M. A. Warren (2013). Martin-Löf Complexes. Annals of Pure and Applied Logic 164 (10):928-956.
    Similar books and articles
    Aarne Ranta (1998). Syntactic Calculus with Dependent Types. Journal of Logic, Language and Information 7 (4):413-431.

    Monthly downloads

    Added to index


    Total downloads

    22 ( #65,959 of 1,089,047 )

    Recent downloads (6 months)

    1 ( #69,722 of 1,089,047 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.