Gauge- and Galilei-invariant geometric phases

Abstract
Neither geometric phases nor differences in geometric phases are generally invariant under time-dependent unitary transformations (unlike differences in total phases), in particular under local gauge transformations and Galilei transformations. (This was pointed out originally by Aharonov and Anandan, and in the case of Galilei transformations has recently been shown explicitly by Sjoeqvist, Brown and Carlsen.) In this paper, I introduce a phase, related to the standard geometric phase, for which phase differences are both gauge- and Galilei-invariant, and, indeed, invariant under transformations to linearly accelerated coordinate systems. I discuss in what sense this phase can also be viewed as geometric, what its relation is to earlier proposals for making geometric phases invariant under gauge or Galilei transformations, and what is its classical analogue. I finally apply this invariant phase to Berry's derivation of the Aharonov-Bohm effect.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,346
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

11 ( #131,838 of 1,096,632 )

Recent downloads (6 months)

1 ( #265,701 of 1,096,632 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.