Constructing ω-stable structures: Rank 2 fields

Journal of Symbolic Logic 65 (1):371-391 (2000)
Abstract
We provide a general framework for studying the expansion of strongly minimal sets by adding additional relations in the style of Hrushovski. We introduce a notion of separation of quantifiers which is a condition on the class of expansions of finitely generated models for the expanded theory to have a countable ω-saturated model. We apply these results to construct for each sufficiently fast growing finite-to-one function μ from 'primitive extensions' to the natural numbers a theory T μ of an expansion of an algebraically closed field which has Morley rank 2. Finally, we show that if μ is not finite-to-one the theory may not be ω-stable
Keywords finite rank expansion   algebraically closed fields   model completeness
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,793
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

2 ( #361,129 of 1,099,722 )

Recent downloads (6 months)

1 ( #303,379 of 1,099,722 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.