Understanding thermodynamic singularities: Phase transitions, data, and phenomena

Philosophy of Science 76 (4):488-505 (2009)
According to standard (quantum) statistical mechanics, the phenomenon of a phase transition, as described in classical thermodynamics, cannot be derived unless one assumes that the system under study is infinite. This is naturally puzzling since real systems are composed of a finite number of particles; consequently, a well‐known reaction to this problem was to urge that the thermodynamic definition of phase transitions (in terms of singularities) should not be “taken seriously.” This article takes singularities seriously and analyzes their role by using the well‐known distinction between data and phenomena , in an attempt to better understand the origin of the puzzle. *Received April 2009; revised July 2009. †To contact the author, please write to: University of Cambridge, Department of History and Philosophy of Science, Free School Lane, Cambridge CB2 3RH, United Kingdom; e‐mail: sib24@cam.ac.uk.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    117 ( #6,572 of 1,088,810 )

    Recent downloads (6 months)

    29 ( #3,334 of 1,088,810 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.