Perceptual symbol systems

Behavioral and Brain Sciences 22 (4):577-660 (1999)
Abstract
Prior to the twentieth century, theories of knowledge were inherently perceptual. Since then, developments in logic, statis- tics, and programming languages have inspired amodal theories that rest on principles fundamentally different from those underlying perception. In addition, perceptual approaches have become widely viewed as untenable because they are assumed to implement record- ing systems, not conceptual systems. A perceptual theory of knowledge is developed here in the context of current cognitive science and neuroscience. During perceptual experience, association areas in the brain capture bottom-up patterns of activation in sensory-motor areas. Later, in a top-down manner, association areas partially reactivate sensory-motor areas to implement perceptual symbols. The stor- age and reactivation of perceptual symbols operates at the level of perceptual components – not at the level of holistic perceptual expe- riences. Through the use of selective attention, schematic representations of perceptual components are extracted from experience and stored in memory (e.g., individual memories of green, purr, hot). As memories of the same component become organized around a com- mon frame, they implement a simulator that produces limitless simulations of the component (e.g., simulations of purr). Not only do such simulators develop for aspects of sensory experience, they also develop for aspects of proprioception (e.g., lift, run) and introspec- tion (e.g., compare, memory, happy, hungry). Once established, these simulators implement a basic conceptual system that represents types, supports categorization, and produces categorical inferences. These simulators further support productivity, propositions, and ab- stract concepts, thereby implementing a fully functional conceptual system. Productivity results from integrating simulators combinato- rially and recursively to produce complex simulations. Propositions result from binding simulators to perceived individuals to represent type-token relations. Abstract concepts are grounded in complex simulations of combined physical and introspective events. Thus, a per- ceptual theory of knowledge can implement a fully functional conceptual system while avoiding problems associated with amodal sym- bol systems. Implications for cognition, neuroscience, evolution, development, and artificial intelligence are explored.
Keywords perception  representation  experience  concepts
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,788
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Fred Adams (2010). Embodied Cognition. Phenomenology and the Cognitive Sciences 9 (4):619-628.
Andy Clark (2006). Material Symbols. Philosophical Psychology 19 (3):291-307.
Peter Langland-Hassan (2011). A Puzzle About Visualization. Phenomenology and the Cognitive Sciences 10 (2):145-173.

View all 142 citations

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

128 ( #6,765 of 1,099,037 )

Recent downloads (6 months)

14 ( #11,832 of 1,099,037 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.