Stability and Paradox in Algorithmic Logic

Journal of Philosophical Logic 36 (1):61 - 95 (2007)
There is significant interest in type-free systems that allow flexible self-application. Such systems are of interest in property theory, natural language semantics, the theory of truth, theoretical computer science, the theory of classes, and category theory. While there are a variety of proposed type-free systems, there is a particularly natural type-free system that we believe is prototypical: the logic of recursive algorithms. Algorithmic logic is the study of basic statements concerning algorithms and the algorithmic rules of inference between such statements. As shown in [1], the threat of paradoxes, such as the Curry paradox, requires care in implementing rules of inference in this context. As in any type-free logic, some traditional rules will fail. The first part of the paper develops a rich collection of inference rules that do not lead to paradox. The second part identifies traditional rules of logic that are paradoxical in algorithmic logic, and so should be viewed with suspicion in type-free logic generally
Keywords abstraction  algorithmic logic  curry paradox  type-free logic
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index


    Total downloads

    1 ( #306,312 of 1,089,047 )

    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.