A Constructive View on Ergodic Theorems

Journal of Symbolic Logic 71 (2):611 - 623 (2006)
Let T be a positive L₁-L∞ contraction. We prove that the following statements are equivalent in constructive mathematics. (1) The projection in L₂ on the space of invariant functions exists: (2) The sequence (Tⁿ)n∈N Cesáro-converges in the L₂ norm: (3) The sequence (Tⁿ)n∈N Cesáro-converges almost everywhere. Thus, we find necessary and sufficient conditions for the Mean Ergodic Theorem and the Dunford-Schwartz Pointwise Ergodic Theorem. As a corollary we obtain a constructive ergodic theorem for ergodic measure-preserving transformations. This answers a question posed by Bishop
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Jeremy Avigad (2012). Uncomputably Noisy Ergodic Limits. Notre Dame Journal of Formal Logic 53 (3):347-350.
    Jan von Plato (1982). The Generalization of de Finetti's Representation Theorem to Stationary Probabilities. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1982:137 - 144.

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index


    Total downloads


    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.