Classification and interpretation

Journal of Symbolic Logic 54 (1):138-159 (1989)
Let S and T be countable complete theories. We assume that T is superstable without the dimensional order property, and S is interpretable in T in such a way that every model of S is coded in a model of T. We show that S does not have the dimensional order property, and we discuss the question of whether $\operatorname{Depth}(S) \leq \operatorname{Depth}(T)$ . For Mekler's uniform interpretation of arbitrary theories S of finite similarity type into suitable theories T s of groups we show that $\operatorname{Depth}(S) \leq \operatorname{Depth}(T_S) \leq 1 + \operatorname{Depth}(S)$
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,997
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles

Monthly downloads

Added to index


Total downloads

5 ( #255,802 of 1,410,041 )

Recent downloads (6 months)

1 ( #177,059 of 1,410,041 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.