Reflections on Skolem's Paradox

Dissertation, University of California, Los Angeles (2000)
Abstract
The Lowenheim-Skolem theorems say that if a first-order theory has infinite models, then it has models which are only countably infinite. Cantor's theorem says that some sets are uncountable. Together, these theorems induce a puzzle known as Skolem's Paradox: the very axioms of set theory which prove the existence of uncountable sets can be satisfied by a merely countable model. ;This dissertation examines Skolem's Paradox from three perspectives. After a brief introduction, chapters two and three examine several formulations of Skolem's Paradox in order to disentangle the roles which set theory, model theory, and philosophy play in these formulations. In these chapters, I accomplish three things. First, I clear up some of the mathematical ambiguities which have all too often infected discussions of Skolem's Paradox. Second, I isolate a key assumption upon which Skolem's Paradox rests, and I show why this assumption has to be false. Finally, I argue that there is no single explanation as to how a countable model can satisfy the axioms of set theory ;In chapter four, I turn to a second puzzle. Why, even though philosophers have known since the early 1920's that Skolem's Paradox has a relatively simple technical solution, have they continued to find this paradox so troubling? I argue that philosophers' attitudes towards Skolem's Paradox have been shaped by the acceptance of certain, fairly specific, claims in the philosophy of language. I then tackle these philosophical claims head on. In some cases, I argue that the claims depend on an incoherent account of mathematical language. In other cases, I argue that the claims are so powerful that they render Skolem's Paradox trivial. In either case, though, examination of the philosophical underpinnings of Skolem's Paradox renders that paradox decidedly unparadoxical. ;Finally, in chapter five, I turn away from "generic" formulations of Skolem's Paradox to examine Hilary Putnam's "model-theoretic argument against realism." I show that Putnam's argument involves mistakes of both the mathematical and the philosophical variety, and that these two types of mistake are closely related. Along the way, I clear up some of the mutual charges of question begging which have characterized discussions between Putnam and his critics
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 13,022
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

32 ( #63,237 of 1,410,275 )

Recent downloads (6 months)

1 ( #177,872 of 1,410,275 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.