Proving consistency of equational theories in bounded arithmetic

Journal of Symbolic Logic 67 (1):279-296 (2002)
Abstract
We consider equational theories for functions defined via recursion involving equations between closed terms with natural rules based on recursive definitions of the function symbols. We show that consistency of such equational theories can be proved in the weak fragment of arithmetic S 1 2 . In particular this solves an open problem formulated by TAKEUTI (c.f. [5, p.5 problem 9.])
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,772
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

3 ( #302,466 of 1,099,564 )

Recent downloads (6 months)

2 ( #186,306 of 1,099,564 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.