Physical Oracles: The Turing Machine and the Wheatstone Bridge

Studia Logica 95 (1/2):279 - 300 (2010)
Earlier, we have studied computations possible by physical systems and by algorithms combined with physical systems. In particular, we have analysed the idea of using an experiment as an oracle to an abstract computational device, such as the Turing machine. The theory of composite machines of this kind can be used to understand (a) a Turing machine receiving extra computational power from a physical process, or (b) an experimenter modelled as a Turing machine performing a test of a known physical theory T. Our earlier work was based upon experiments in Newtonian mechanics. Here we extend the scope of the theory of experimental oracles beyond Newtonian mechanics to electrical theory. First, we specify an experiment that measures resistance using a Wheatstone bridge and start to classify the computational power of this experimental oracle using non-uniform complexity classes. Secondly, we show that modelling an experimenter and experimental procedure algorithmically imposes a limit on our ability to measure resistance by the Wheatstone bridge. The connection between the algorithm and physical test is mediated by a protocol controlling each query, especially the physical time taken by the experimenter. In our studies we find that physical experiments have an exponential time protocol, this we formulate as a general conjecture. Our theory proposes that measurability in Physics is subject to laws which are co-lateral effects of the limits of computability and computational complexity
Keywords Turing machine  physical oracle  experimental procedure  theory of measurement  Wheatstone bridge  physically measurable numbers
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 22,037
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

27 ( #152,462 of 1,934,371 )

Recent downloads (6 months)

7 ( #76,889 of 1,934,371 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.