A new "feasible" arithmetic

Journal of Symbolic Logic 67 (1):104-116 (2002)
A classical quantified modal logic is used to define a "feasible" arithmetic A 1 2 whose provably total functions are exactly the polynomial-time computable functions. Informally, one understands $\Box\alpha$ as "α is feasibly demonstrable". A 1 2 differs from a system A 2 that is as powerful as Peano Arithmetic only by the restriction of induction to ontic (i.e., $\Box$ -free) formulas. Thus, A 1 2 is defined without any reference to bounding terms, and admitting induction over formulas having arbitrarily many alternations of unbounded quantifiers. The system also uses only a very small set of initial functions. To obtain the characterization, one extends the Curry-Howard isomorphism to include modal operations. This leads to a realizability translation based on recent results in higher-type ramified recursion. The fact that induction formulas are not restricted in their logical complexity, allows one to use the Friedman A translation directly. The development also leads us to propose a new Frege rule, the "Modal Extension" rule: if $\vdash \alpha$ then $\vdash A \leftrightarrow \alpha$ a for new symbol A
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    4 ( #198,664 of 1,089,057 )

    Recent downloads (6 months)

    1 ( #69,801 of 1,089,057 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.