Finite trees in tense logic

Studia Logica 62 (2):121-140 (1999)
Abstract
In this paper we show the adequacy of tense logic with unary operators for dealing with finite trees. We prove that models on finite trees can be characterized by tense formulas, and describe an effective method to find an axiomatization of the theory of a given finite tree in tense logic. The strength of the characterization is shown by proving that adding the binary operators "Until" and "Since" to the language does not result in a better description than that given by unary tense logic; although the greater expressive power of "Until" and "Since" can be exploited by using the semantics of e-frames instead of traditional Kripke semantics
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,304
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

6 ( #189,936 of 1,096,366 )

Recent downloads (6 months)

1 ( #224,935 of 1,096,366 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.