Infinitesimals and the continuum

Abstract
The opposed concepts of continuity and discreteness have figured prominently in the development of mathematics, and have also commanded the attention of philosophers. Continuous entities may be characterized by the fact that they can be divided indefinitely without altering their essential nature. So, for instance, the water in a bucket may be indefinitely halved and yet remain water. (For the purposes of illustration I ignore the atomic nature of matter which has been established by modern physics.) Discrete entities, on the other hand, typically cannot be divided without effecting a change in their nature: half a wheel is plainly no longer a wheel. Thus we have two contrasting properties: on the one hand, the property of being indivisible, separate or discrete, and, on the other, the property of being indefinitely divisible and continuous although not actually divided into parts.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,399
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

20 ( #86,451 of 1,102,965 )

Recent downloads (6 months)

5 ( #62,029 of 1,102,965 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.