Infinitesimals and the continuum

The opposed concepts of continuity and discreteness have figured prominently in the development of mathematics, and have also commanded the attention of philosophers. Continuous entities may be characterized by the fact that they can be divided indefinitely without altering their essential nature. So, for instance, the water in a bucket may be indefinitely halved and yet remain water. (For the purposes of illustration I ignore the atomic nature of matter which has been established by modern physics.) Discrete entities, on the other hand, typically cannot be divided without effecting a change in their nature: half a wheel is plainly no longer a wheel. Thus we have two contrasting properties: on the one hand, the property of being indivisible, separate or discrete, and, on the other, the property of being indefinitely divisible and continuous although not actually divided into parts.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    15 ( #90,306 of 1,088,427 )

    Recent downloads (6 months)

    1 ( #69,601 of 1,088,427 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.