Two Approaches to Modelling the Universe: Synthetic Differential Geometry and Frame-Valued Sets

I describe two approaches to modelling the universe, the one having its origin in topos theory and differential geometry, the other in set theory. The first is synthetic differential geometry. Traditionally, there have been two methods of deriving the theorems of geometry: the analytic and the synthetic. While the analytical method is based on the introduction of numerical coordinates, and so on the theory of real numbers, the idea behind the synthetic approach is to furnish the subject of geometry with a purely geometric foundation in which the theorems are then deduced by purely logical means from an initial body of postulates. The most familiar examples of the synthetic geometry are classical Euclidean geometry and the synthetic projective geometry introduced by Desargues in the 17th century and revived and developed by Carnot, Poncelet, Steiner and others during the 19th century. The power of analytic geometry derives very largely from the fact that it permits the methods of the calculus, and, more generally, of mathematical analysis, to be introduced into geometry, leading in particular to differential geometry (a term, by the way, introduced in 1894 by the Italian geometer Luigi Bianchi). That being the case, the idea of a “synthetic” differential geometry seems elusive: how can differential geometry be placed on a “purely geometric” or “axiomatic” foundation when the apparatus of the calculus seems inextricably involved? To my knowledge there have been two attempts to develop a synthetic differential geometry. The first was initiated by Herbert Busemann in the 1940s, building on earlier work of Paul Finsler. Here the idea was to build a differential geometry that, in its author’s words, “requires no derivatives”: the basic objects in Busemann’s approach are not differentiable manifolds, but metric spaces of a certain type in which the notion of a geodesic can be defined in an intrinsic manner. I shall not have anything more to say about this approach. The second approach, that with which I shall be concerned here, was originally proposed in the 1960s by F..
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,316
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Frank Arntenius & Cian Dorr (2012). Calculus as Geometry. In Frank Arntzenius (ed.), Space, Time and Stuff. Oxford University Press
Gordon Belot (2003). Remarks on the Geometry of Visibles. Philosophical Quarterly 53 (213):581–586.
Lisa Shabel (2004). Kant's "Argument From Geometry". Journal of the History of Philosophy 42 (2):195-215.

Monthly downloads

Added to index


Total downloads

13 ( #333,165 of 1,926,174 )

Recent downloads (6 months)

1 ( #456,082 of 1,926,174 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.