Analyzing the Core of Categorial Grammar

Even though residuation is at the core of Categorial Grammar (Lambek, 1958), it is not always immediate to realize how standard logical systems like Multi-modal Categorial Type Logics (MCTL) (Moortgat, 1997) actually embody this property. In this paper, we focus on the basic system NL (Lambek, 1961) and its extension with unary modalities NL(♦) (Moortgat, 1996), and we spell things out by means of Display Calculi (DC) (Belnap, 1982; Goré, 1998). The use of structural operators in DC permits a sharp distinction between the core properties we want to impose on the logical system and the way these properties are projected into the logical operators. We will show how we can obtain Lambek residuated triple \, / and • of binary operators, and how the operators ♦and □↓ introduced by Moortgat (1996) are indeed their unary counterpart.In the second part of the paper we turn to other important algebraic properties which are usually investigated in conjunction with residuation (Birkhoff, 1967): Galois and dual Galois connections. Again, DC let us readily define logical calculi capturing them. We also provide preliminary ideas on how to use these new operators when modeling linguistic phenomena
Keywords categorial grammar  categorial type logics  display calculi  Galois connections  residuation
Categories (categorize this paper)
DOI 10.1023/B:JLLI.0000024730.34743.fa
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,217
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

31 ( #153,192 of 1,932,454 )

Recent downloads (6 months)

2 ( #332,988 of 1,932,454 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.