The gödel paradox and Wittgenstein's reasons

Philosophia Mathematica 17 (2):208-219 (2009)
Abstract
An interpretation of Wittgenstein’s much criticized remarks on Gödel’s First Incompleteness Theorem is provided in the light of paraconsistent arithmetic: in taking Gödel’s proof as a paradoxical derivation, Wittgenstein was drawing the consequences of his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. It is shown that the features of paraconsistent arithmetics match with some intuitions underlying Wittgenstein’s philosophy of mathematics, such as its strict finitism and the insistence on the decidability of any mathematical question.
Keywords Gödel's Incompleteness Theorems  Wittgenstein's philosophy of mathematics  Paraconsistency
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    View all 9 references

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-05-23

    Total downloads

    206 ( #1,911 of 1,088,810 )

    Recent downloads (6 months)

    40 ( #1,616 of 1,088,810 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.