The interpretability logic of peano arithmetic

Journal of Symbolic Logic 55 (3):1059-1089 (1990)
PA is Peano arithmetic. The formula $\operatorname{Interp}_\mathrm{PA}(\alpha, \beta)$ is a formalization of the assertion that the theory PA + α interprets the theory PA + β (the variables α and β are intended to range over codes of sentences of PA). We extend Solovay's modal analysis of the formalized provability predicate of PA, Pr PA (x), to the case of the formalized interpretability relation $\operatorname{Interp}_\mathrm{PA}(x, y)$ . The relevant modal logic, in addition to the usual provability operator `□', has a binary operator ` $\triangleright$ ' to be interpreted as the formalized interpretability relation. We give an axiomatization and a decision procedure for the class of those modal formulas that express valid interpretability principles (for every assignment of the atomic modal formulas to sentences of PA). Our results continue to hold if we replace the base theory PA with Zermelo-Fraenkel set theory, but not with Gödel-Bernays set theory. This sensitivity to the base theory shows that the language is quite expressive. Our proof uses in an essential way earlier work done by A. Visser, D. de Jongh, and F. Veltman on this problem
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2274474
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,305
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

View all 6 citations / Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

15 ( #296,139 of 1,932,585 )

Recent downloads (6 months)

6 ( #149,516 of 1,932,585 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.