Do quantum-mechanical systems always possess definite properties dictated by their states?

In the article the possibility of breaking the eigenvalue-eigenstate link in quantum mechanics is considered. An argument is presented to the effect that there are some non-maximal observables for which the implication from eigenstates to eigenvalues is not valid, i.e. such that although the probability of revealing certain value upon measurement is one, they don't possess this value before the measurement. It is shown that the existence of such observables leads to contextuality, i.e. the thesis that one Hermitean operator can represent more than one physical observable. Finally, contextuality brought about by these considerations is compared with contextuality suggested by the Kochen-Specker paradox.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    43 ( #32,955 of 1,089,047 )

    Recent downloads (6 months)

    12 ( #9,280 of 1,089,047 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.