Linear discrete population models with two time scales in fast changing environments II: Non-autonomous case

Acta Biotheoretica 50 (1) (2002)
Abstract
As the result of the complexity inherent in nature, mathematical models employed in ecology are often governed by a large number of variables. For instance, in the study of population dynamics we often deal with models for structured populations in which individuals are classified regarding their age, size, activity or location, and this structuring of the population leads to high dimensional systems. In many instances, the dynamics of the system is controlled by processes whose time scales are very different from each other. Aggregation techniques take advantage of this situation to build a low dimensional reduced system from which behavior we can approximate the dynamics of the complex original system.In this work we extend aggregation techniques to the case of time dependent discrete population models with two time scales where both the fast and the slow processes are allowed to change at their own characteristic time scale, generalizing the results of previous studies. We propose a non-autonomous model with two time scales, construct an aggregated model and give relationship between the variables governing the original and the reduced systems. We also explore how the properties of strong and weak ergodicity, regarding the capacity of the system to forget initial conditions, of the original system can be studied in terms of the reduced system.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index

    2009-01-28

    Total downloads

    1 ( #306,230 of 1,088,811 )

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.