The dual space of a finite simple ockham algebra

Studia Logica 56 (1-2):3 - 21 (1996)
Let (L; f) be a finite simple Ockham algebra and let (X;g) be its dual space. We first prove that every connected component of X is either a singleton or a generalised crown (i.e. an ordered set that is connected, has length 1, and all vertices of which have the same degree). The representation of a generalised crown by a square (0,1)-matrix in which all line sums are equal is used throughout, and a complete description of X, including the number of connected components and the degree of the vertices, is given. We then examine the converse problem of when a generalised crown can be made into a connected component of (X; g). We also determine the number of non-isomorphic finite simple Ockham algebras that belong properly to a given subvariety P 2n,0. Finally, we show that the number of fixed points of (L; f) is 0,1, or 2 according to the nature of X.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    4 ( #198,664 of 1,089,054 )

    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.