Updating the wave-particle duality

Abstract

Updating the wave-particle duality María C. Boscá e-mail: [email protected] Departamento de Física Atómica, Molecular y Nuclear Universidad de Granada E-18071. Granada Spain The wave-particle-duality, the fundamental component of the new quantum formalism in Bohr’s opinion, must be reformulated by incorporating the results of some experiments accomplished in the last decades of twentieth century. The Bohr´s complementarity principle stated the mutual exclusiveness and joint full completeness of the two descriptions of quantum systems; after Einstein-Podolsky-Rosen’paper, the wave-particle duality, or wave-particle complementarity, could be expressed by stating that it is impossible to build up an experimental arrangement in which we observe at the same time both corpuscular and wave aspects. In a two-slit experiment, they would correspond, respectively, to the which-way knowledge and the observation of interference pattern. Bohr showed this mutual exclusivity in numerous examples, and linked it to the unavoidable disturbance inherent in any measurement event. In quantum mechanical formalism, the complementarity principle has a clear mathematical expression: two observables are complementary if precise knowledge of one of them implies that all possible outcomes of the other are equally probable; their extension to classical concepts is not concerned. In 1991 Scully et al published a variant of the two-slit experiment that incorporates two micromasers cavities and a laser beam to provide which-path information without net momentum transferred during the interaction ; the impossibility of know which slit an atom went through and still observe the interference fringes is preserved by the establishing of quantum correlations between the measuring apparatus and the system being observed. They claimed that complementarity, of which wave-particle duality would be to them a manifestation, is more fundamental than the uncertainty principle. In 1996 B-G. Englert, following an approach originally due to Wooters and Zurek, derived, without making use of Heisenberg’s uncertainty relation, an inequality that quantifies the mutual compatibility relation between fringe visibility and which-way information. The inequality, that they denominated as “interferometric duality”, has the expression D^2 + V^2 ≤ 1, where D stands for the distinguishability of the ways and V for the fringe visibility; both of them are mathematical expressions that can be measured to check experimentally the inequality. Today, it is clear that intermediate particle-wave behaviours exist and, in addition to that, there are single experiments in which both classical wave-like and particle-like behaviours are showed total and simultaneously on an individual system. For instance, in the Bose’s double-prism experiment, tunnelling and perfect anticoincidence were observed in single photon states. Consequently, the meaning of the wave-particle duality must incorporate the simultaneous use of the two classical descriptions in the interpretation of experiments, loosing their original mutual exclusivity, which is incorporated as an extreme case in the new interferometric duality, a continuous quantum concept. The wave-particle duality, therefore, must be formulated as an interpretative addition to quantum mechanics, to which is possible to renounce if any pretension of visualize quantum phenomena in terms of classical concepts and intuitions is abandoned.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,219

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles

The case against quantum duality.Alfred Landé - 1962 - Philosophy of Science 29 (1):1-6.
Schrödinger's interpretation of quantum mechanics and the relevance of Bohr's experimental critique.Slobodan Perovic - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (2):275-297.
Heisenberg and the wave–particle duality.Kristian Camilleri - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (2):298-315.
The decline and fall of quantum dualism.Alfred Landé - 1971 - Philosophy of Science 38 (2):221-223.

Analytics

Added to PP
2009-01-28

Downloads
63 (#246,899)

6 months
5 (#544,079)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references