General arithmetic

Abstract
General Arithmetic is the theory consisting of induction on a successor function. Normal arithmetic, say in the system called Peano Arithmetic, makes certain additional demands on the successor function. First, that it be total. Secondly, that it be one-to-one. And thirdly, that there be a first element which is not in its image. General Arithmetic abandons all of these further assumptions, yet is still able to prove many meaningful arithmetic truths, such as, most basically, Commutativity and Associativity of Addition and Multiplication, but also Lagrange’s Four-Square Theorem. Adding one more axiom, the one-oneness of succession, one can prove many more theorems, such as Quadratic Reciprocity and Fermat’s Little Theorem. By looking at arithmetic in this general setting, one receives a deeper understanding of the underlying structures.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,404
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

31 ( #57,398 of 1,102,976 )

Recent downloads (6 months)

3 ( #120,763 of 1,102,976 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.