Who needs (to assume) Hume's principle? July 2006

In the Foundations of Arithmetic, Frege famously developed a theory which today goes by the name of logicism - that it is possible to prove the truths of arithmetic using only logical principles and definitions. Logicism fell out of favor for various reasons, most spectacular of which was that the system, which Frege thought would definitively prove his thesis, turned out to be inconsistent. In the early 1980s a movement called neo-logicism was begun by Crispin Wright. Neo-logicism holds that Frege was almost right, in that arithmetic can be proven in second-order logic using only definitions and one quasi-logical proposition, called Hume's Principle, which says that the number of Ps equals the number of Qs if and only if they can be put into one-to-one correspondence. There has been some controversy about the status of Hume’s Principle - for instance, whether it counts as a logical or analytic proposition. (See e.g. the similarly titled, “Is Hume’s Principle Analytic?, by Crispin Wright and George Boolos.) In this paper a different tack will be tried. Indeed Frege is almost right. He is almost right because a large part of arithmetic and number theory, or at the least a large part of something which looks like them, can indeed be generated using only logical principles and definitions, without the assumption of any quasi-logical assertion and in particular without Hume’s Principle. Specifically, logic will be taken as second-order logic with full comprehension and the addition of one distinguished 2-ary predicate “!”. A large amount of arithmetic and number theory will then be developed, using only (second-order) logical principles and definitions. It can thus be seen that the epistemological status of this large part of arithmetic is independent of the question of the status of Hume’s Principle.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    34 ( #43,036 of 1,088,379 )

    Recent downloads (6 months)

    1 ( #69,601 of 1,088,379 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.