A representation theorem for a decision theory with conditionals

Synthese 116 (2):187-229 (1998)
Abstract
This paper investigates the role of conditionals in hypothetical reasoning and rational decision making. Its main result is a proof of a representation theorem for preferences defined on sets of sentences (and, in particular, conditional sentences), where an agent’s preference for one sentence over another is understood to be a preference for receiving the news conveyed by the former. The theorem shows that a rational preference ordering of conditional sentences determines probability and desirability representations of the agent’s degrees of belief and desire that satisfy, in the case of non-conditional sentences, the axioms of Jeffrey’s decision theory and, in the case of conditional sentences, Adams’ expression for the probabilities of conditionals. Furthermore, the probability representation is shown to be unique and the desirability representation unique up to positive linear transformation.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,316
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

15 ( #102,336 of 1,096,462 )

Recent downloads (6 months)

4 ( #62,479 of 1,096,462 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.