On keeping blue swans and unknowable facts at bay : a case study on Fitch's paradox

In Joe Salerno (ed.), New Essays on the Knowability Paradox. Oxford University Press (2009)
(T5) ϕ → ◊Kϕ |-- ϕ → Kϕ where ◊ is possibility, and ‘Kϕ’ is to be read as ϕ is known by someone at some time. Let us call the premise the knowability principle and the conclusion near-omniscience.2 Here is a way of formulating Fitch’s proof of (T5). Suppose the knowability principle is true. Then the following instance of it is true: (p & ~Kp) → ◊K(p & ~Kp). But the consequent is false, it is not possible to know p & ~Kp. That is because the supposition that it is known is provably inconsistent.3 The inconsistency requires us to deny the possibility of the supposition, yielding ~◊K(p & ~Kp). This, together with the above instance of the knowability principle, entails ~(p & ~Kp), which is (classically) equivalent to p → Kp. Since p occurs in none of our undischarged assumptions, we may generalize to get near-omniscience, ϕ → Kϕ. QED.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,661
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

258 ( #4,810 of 1,726,249 )

Recent downloads (6 months)

185 ( #3,356 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.