The baire category theorem in weak subsystems of second-order arithmetic

Journal of Symbolic Logic 58 (2):557-578 (1993)
Abstract
Working within weak subsystems of second-order arithmetic Z2 we consider two versions of the Baire Category theorem which are not equivalent over the base system RCA0. We show that one version (B.C.T.I) is provable in RCA0 while the second version (B.C.T.II) requires a stronger system. We introduce two new subsystems of Z2, which we call RCA+ 0 and WKL+ 0, and show that RCA+ 0 suffices to prove B.C.T.II. Some model theory of WKL+ 0 and its importance in view of Hilbert's program is discussed, as well as applications of our results to functional analysis
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,084
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

14 ( #120,514 of 1,101,939 )

Recent downloads (6 months)

8 ( #34,117 of 1,101,939 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.