Curry-Howard terms for linear logic

Studia Logica 61 (2):223-235 (1998)
In this paper we 1. provide a natural deduction system for full first-order linear logic, 2. introduce Curry-Howard-style terms for this version of linear logic, 3. extend the notion of substitution of Curry-Howard terms for term variables, 4. define the reduction rules for the Curry-Howard terms and 5. outline a proof of the strong normalization for the full system of linear logic using a development of Girard's candidates for reducibility, thereby providing an alternative to Girard's proof using proof-nets.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    5 ( #178,805 of 1,089,047 )

    Recent downloads (6 months)

    1 ( #69,722 of 1,089,047 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.