Outline of a Paraconsistent Category Theory

Abstract
The aim of this paper is two-fold: (1) To contribute to a better knowledge of the method of the Argentinean mathematicians Lia Oubifia and Jorge Bosch to formulate category theory independently of set theory. This method suggests a new ontology of mathematical objects, and has a profound philosophical significance (the underlying logic of the resulting category theory is classical iirst—order predicate calculus with equality). (2) To show in outline how the Oubina-Bosch theory can be modified to give rise to a strong paraconsistent category theory; strong enough to be taken as the basis for a paraconsistent mathematics which encompasses all classical mathematical results
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,750
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-02-09

Total downloads

78 ( #16,650 of 1,098,888 )

Recent downloads (6 months)

5 ( #57,750 of 1,098,888 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.