Outline of a Paraconsistent Category Theory

The aim of this paper is two-fold: (1) To contribute to a better knowledge of the method of the Argentinean mathematicians Lia Oubifia and Jorge Bosch to formulate category theory independently of set theory. This method suggests a new ontology of mathematical objects, and has a profound philosophical significance (the underlying logic of the resulting category theory is classical iirst—order predicate calculus with equality). (2) To show in outline how the Oubina-Bosch theory can be modified to give rise to a strong paraconsistent category theory; strong enough to be taken as the basis for a paraconsistent mathematics which encompasses all classical mathematical results
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    74 ( #15,261 of 1,088,810 )

    Recent downloads (6 months)

    2 ( #42,743 of 1,088,810 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.