A classification of intersection type systems

Journal of Symbolic Logic 67 (1):353-368 (2002)
Abstract
The first system of intersection types, Coppo and Dezani [3], extended simple types to include intersections and added intersection introduction and elimination rules (( $\wedge$ I) and ( $\wedge$ E)) to the type assignment system. The major advantage of these new types was that they were invariant under β-equality, later work by Barendregt, Coppo and Dezani [1], extended this to include an (η) rule which gave types invariant under βη-reduction. Urzyczyn proved in [6] that for both these systems it is undecidable whether a given intersection type is empty. Kurata and Takahashi however have shown in [5] that this emptiness problem is decidable for the sytem including (η), but without ( $\wedge$ I). The aim of this paper is to classify intersection type systems lacking some of ( $\wedge$ I), ( $\wedge$ E) and (η), into equivalence classes according to their strength in typing λ-terms and also according to their strength in possessing inhabitants. This classification is used in a later paper to extend the above (un)decidability results to two of the five inhabitation-equivalence classes. This later paper also shows that the systems in two more of these classes have decidable inhabitation problems and develops algorithms to find such inhabitants
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,731
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-01-28

Total downloads

1 ( #433,596 of 1,098,615 )

Recent downloads (6 months)

0

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.