Symbolic languages and natural structures a mathematician's account of empiricism

Foundations of Science 10 (2):153-245 (2005)
Abstract
The ancient dualism of a sensible and an intelligible world important in Neoplatonic and medieval philosophy, down to Descartes and Kant, would seem to be supplanted today by a scientific view of mind-in-nature. Here, we revive the old dualism in a modified form, and describe mind as a symbolic language, founded in linguistic recursive computation according to the Church-Turing thesis, constituting a world L that serves the human organism as a map of the Universe U. This methodological distinction of L vs. U helps to understand how and why structures of phenomena come to be opposed to their nature in human thought, a central topic in Heideggerian philosophy. U is uncountable according to Georg Cantor’s set theory but Language L, based on the recursive function system, is countable, and anchored in a Gray Area within U of observable phenomena, typically symbols (or tokens), prelinguistic structures, genetic-historical records of their origins. Symbols, the phenomena most familiar to mathematicians, are capable of being addressed in L-processing. The Gray Area is the human Environment E, where we can live comfortably, that we manipulate to create our niche within hostile U, with L offering overall competence of the species to survive. The human being is seen in the light of his or her linguistic recursively computational (finite) mind. Nature U, by contrast, is the unfathomable abyss of being, infinite labyrinth of darkness, impenetrable and hostile to man. The U-man, biological organism, is a stranger in L-man, the mind-controlled rational person, as expounded by Saint Paul. Noumena can now be seen to reside in L, and are not fully supported by phenomena. Kant’s noumenal cause is the mental L-image of only partly phenomenal causation. Mathematics occurs naturally in pre-linguistic phenomena, including natural laws, which give rise to pure mathematical structures in the world of L. Mathematical foundation within philosophy is reversed to where natural mathematics in the Gray Area of pre-linguistic phenomena can be seen to be a prerequisite for intellectual discourse. Lesser, nonverbal versions of L based on images are shared with animals.
Keywords Mind-in-Nature  Language Systems  recursive functions  Church-Turing thesis  pre-linguistic structures  phenomenal and transcendental uses of language
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,273
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

5 ( #210,215 of 1,096,280 )

Recent downloads (6 months)

1 ( #224,942 of 1,096,280 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.