A topos perspective on the kochen-Specker theorem: IV. Interval valuations

Abstract
We extend the topos-theoretic treatment given in previous papers of assigning values to quantities in quantum theory. In those papers, the main idea was to assign a sieve as a partial and contextual truth-value to a proposition that the value of a quantity lies in a certain set D of real numbers. Here we relate such sieve-valued valuations to valuations that assign to quantities subsets, rather than single elements, of their spectrum (we call these interval valuations). There are two main results. First, there is a natural correspondence between these two kinds of valuation, which uses the notion of a state's support for a quantity (Section 3). Second, if one starts with a more general notion of interval valuation, one sees that our interval valuations based on the notion of support (and correspondingly, our sieve-valued valuations) are a simple way to secure certain natural properties of valuations, such as monotonicity (Section 4).
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,561
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

15 ( #105,835 of 1,098,129 )

Recent downloads (6 months)

1 ( #283,807 of 1,098,129 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.