Implicit connectives of algebraizable logics

Studia Logica 78 (1-2):155 - 170 (2004)
Abstract
An extensions by new axioms and rules of an algebraizable logic in the sense of Blok and Pigozzi is not necessarily algebraizable if it involves new connective symbols, or it may be algebraizable in an essentially different way than the original logic. However, extension whose axioms and rules define implicitly the new connectives are algebraizable, via the same equivalence formulas and defining equations of the original logic, by enriched algebras of its equivalente quasivariety semantics. For certain strongly algebraizable logics, all connectives defined implicitly by axiomatic extensions of the logic are explicitly definable.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,304
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

8 ( #159,177 of 1,096,363 )

Recent downloads (6 months)

2 ( #130,630 of 1,096,363 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.