Implicit connectives of algebraizable logics

Studia Logica 78 (1-2):155 - 170 (2004)
An extensions by new axioms and rules of an algebraizable logic in the sense of Blok and Pigozzi is not necessarily algebraizable if it involves new connective symbols, or it may be algebraizable in an essentially different way than the original logic. However, extension whose axioms and rules define implicitly the new connectives are algebraizable, via the same equivalence formulas and defining equations of the original logic, by enriched algebras of its equivalente quasivariety semantics. For certain strongly algebraizable logics, all connectives defined implicitly by axiomatic extensions of the logic are explicitly definable.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    6 ( #162,909 of 1,088,810 )

    Recent downloads (6 months)

    1 ( #69,735 of 1,088,810 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.