Toward a more natural expression of quantum logic with Boolean fractions

Journal of Philosophical Logic 34 (4):363 - 401 (2005)
Abstract
This paper uses a non-distributive system of Boolean fractions (a|b), where a and b are 2-valued propositions or events, to express uncertain conditional propositions and conditional events. These Boolean fractions, 'a if b' or 'a given b', ordered pairs of events, which did not exist for the founders of quantum logic, can better represent uncertain conditional information just as integer fractions can better represent partial distances on a number line. Since the indeterminacy of some pairs of quantum events is due to the mutual inconsistency of their experimental conditions, this algebra of conditionals can express indeterminacy. In fact, this system is able to express the crucial quantum concepts of orthogonality, simultaneous verifiability, compatibility, and the superposition of quantum events, all without resorting to Hilbert space. A conditional (a|b) is said to be "inapplicable" (or "undefined") in those instances or models for which b is false. Otherwise the conditional takes the truth-value of proposition a. Thus the system is technically 3-valued, but the 3rd value has nothing to do with a state of ignorance, nor to some half-truth. People already routinely put statements into three categories: true, false, or inapplicable. As such, this system applies to macroscopic as well as microscopic events. Two conditional propositions turn out to be simultaneously verifiable just in case the truth of one implies the applicability of the other. Furthermore, two conditional propositions (a|b) and (c|d) reside in a common Boolean sub-algebra of the non-distributive system of conditional propositions just in case b = d, their conditions are equivalent. Since all aspects of quantum mechanics can be represented with this near classical logic, there is no need to adopt Hilbert space logic as ordinary logic, just a need perhaps to adopt propositional fractions to do logic, just as we long ago adopted integer fractions to do arithmetic. The algebra of Boolean fractions is a natural, near-Boolean extension of Boolean algebra adequate to express quantum logic. While this paper explains one group of quantum anomalies, it nevertheless leaves no less mysterious the 'influence-at-a-distance', quantum entanglement phenomena. A quantum realist must still embrace non-local influences to hold that "hidden variables" are the measured properties of particles. But that seems easier than imaging wave-particle duality and instant collapse, as offered by proponents of the standard interpretation of quantum mechanics
Keywords compatible propositions  conditional events  conditional logic  conditional probability  orthoalgebra  orthogonal  simultaneously measurable  simultaneously observable  simultaneously verifiable  superposition
Categories (categorize this paper)
Options
 Save to my reading list Follow the author(s) My bibliography Export citation Find it on Scholar Edit this record Mark as duplicate Revision history Request removal from index

 PhilPapers Archive Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,189 External links Setup an account with your affiliations in order to access resources via your University's proxy server Configure custom proxy (use this if your affiliation does not provide a proxy) Through your library Sign in / register to customize your OpenURL resolver.Configure custom resolver
References found in this work BETA
Citations of this work BETA

No citations found.

Similar books and articles
J. L. Bell (1986). A New Approach to Quantum Logic. British Journal for the Philosophy of Science 37 (1):83-99.
Slawomir Bugajski (1980). Only If 'Acrobatic Logic' is Non-Boolean. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1980:264 - 271.
Peter Mittelstaedt (1978). The Metalogic of Quantum Logic. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1978:249 - 256.

2009-01-28

43 ( #110,486 of 1,940,952 )