Revisiting the relation between species diversity and information theory

Acta Biotheoretica 56 (4):275-283 (2008)
The Shannon information function (H) has been extensively used in ecology as a statistic of species diversity. Yet, the use of Shannon diversity index has also been criticized, mainly because of its ambiguous ecological interpretation and because of its relatively great sensitivity to the relative abundances of species in the community. In my opinion, the major shortcoming of the traditional perspective (on the possible relation of species diversity with information theory) is that species need for an external receiver (the scientist or ecologist) to exist and transmit information. Because organisms are self-catalized replicating structures that can transmit genotypic information to offspring, it should be evident that any single species has two possible states or alternatives: to be or not to be. In other words, species have no need for an external receiver since they are their own receivers. Therefore, the amount of biological information (at the species scale) in a community with one only species would be species, and not bits as in the traditional perspective. Moreover, species diversity appears to be a monotonic increasing function of (or S) when all species are equally probable (S being species richness), and not a function of as in the traditional perspective. To avoid the noted shortcoming, we could use 2H (instead of H) for calculating species diversity and species evenness (= 2H/S). However, owing to the relatively great sensitivity of H to the relative abundances of species in the community, the value of species dominance (= 1 − 2H/S) is unreasonably high when differences between dominant and subordinate species are considerable, thereby lowering the value of species evenness and diversity. This unsatisfactory behaviour is even more evident for Simpson index and related algorithms. I propose the use of other statistics for a better analysis of community structure, their relationship being: species evenness + species dominance = 1; species diversity × species uniformity = 1; and species diversity = species richness × species evenness.
Keywords Philosophy   Evolutionary Biology   Philosophy of Biology
Categories (categorize this paper)
DOI 10.1007/s10441-008-9053-x
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,217
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Claude Shannon (1948). A Mathematical Theory of Communication. Bell System Technical Journal 27:379–423.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

33 ( #143,658 of 1,932,483 )

Recent downloads (6 months)

2 ( #332,993 of 1,932,483 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.