Aristotle's prohibition rule on kind-crossing and the definition of mathematics as a science of quantities

Synthese 174 (2):225 - 235 (2010)
Abstract
The article evaluates the Domain Postulate of the Classical Model of Science and the related Aristotelian prohibition rule on kind-crossing as interpretative tools in the history of the development of mathematics into a general science of quantities. Special reference is made to Proclus’ commentary to Euclid’s first book of Elements , to the sixteenth century translations of Euclid’s work into Latin and to the works of Stevin, Wallis, Viète and Descartes. The prohibition rule on kind-crossing formulated by Aristotle in Posterior analytics is used to distinguish between conceptions that share the same name but are substantively different: for example the search for a broader genus including all mathematical objects; the search for a common character of different species of mathematical objects; and the effort to treat magnitudes as numbers.
Keywords Prohibition-rule on kind-crossing  Mathesis universalis  Aristotle  Mathematics  Quantity  Magnitude
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive Paola Cantù, Aristotle's prohibition rule on kind-crossing and the definition of mathematics as a science of quantities
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

69 ( #21,351 of 1,103,048 )

Recent downloads (6 months)

12 ( #16,281 of 1,103,048 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.