Uniform inseparability in explicit mathematics

Journal of Symbolic Logic 64 (1):313-326 (1999)
We deal with ontological problems concerning basic systems of explicit mathematics, as formalized in Jäger's language of types and names. We prove a generalized inseparability lemma, which implies a form of Rice's theorem for types and a refutation of the strong power type axiom POW + . Next, we show that POW + can already be refuted on the basis of a weak uniform comprehension without complementation, and we present suitable optimal refinements of the remaining results within the weaker theory
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    4 ( #198,579 of 1,088,874 )

    Recent downloads (6 months)

    1 ( #69,661 of 1,088,874 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.