Relative Identity and the Number of Artifacts

Techne 13 (2):108-122 (2009)
Abstract
Relativists maintain that identity is always relative to a general term (RI). According to them, the notion of absolute identity has to be abandoned and replaced by a multiplicity of relative identity relations for which Leibniz’s Law does not hold. For relativists RI is at least as good as the Fregean cardinality thesis (FC), which contends that an ascription of cardinality is always relative to a concept specifying what, in any specific case, counts as a unit. The same train of thought on cardinality and identity is apparent among those – Artifactualists – who take relative identity sentences for artifacts as the norm. The aim of this paper is (i) to criticize the thesis (T1) thatfrom FC it is possible to derive RI, and (ii) to explain why Artifactualists mistakenly believe that RI can be derived from FC. The misunderstanding derives from their assumption that the concept of artifact – like the concept of object – is not a sortal concept
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,928
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2011-01-09

Total downloads

19 ( #88,122 of 1,100,500 )

Recent downloads (6 months)

4 ( #80,501 of 1,100,500 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.