Free-decomposability in Varieties of Pseudocomplemented Residuated Lattices

Studia Logica 98 (1-2):223-235 (2011)
In this paper we prove that the free pseudocomplemented residuated lattices are decomposable if and only if they are Stone, i.e., if and only if they satisfy the identity ¬ x ∨ ¬¬ x = 1. Some applications are given
Keywords Pseudocomplemented residuated lattices  free algebras  decomposability  Stone algebras  Boolean elements
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA
    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index


    Total downloads

    1 ( #306,223 of 1,088,905 )

    Recent downloads (6 months)

    1 ( #69,661 of 1,088,905 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.