Initial segments of the lattice of π01 classes

Journal of Symbolic Logic 66 (4):1749 - 1765 (2001)
Abstract
We show that in the lattice E Π of Π 0 1 classes there are initial segments [ $\emptyset$ , P] = L(P) which are not Boolean algebras, but which have a decidable theory. In fact, we will construct for any finite distributive lattice L which satisfies the dual of the usual reduction property a Π 0 1 class P such that L is isomorphic to the lattice L(P)*, which is L(P), modulo finite differences. For the 2-element lattice, we obtain a minimal class, first constructed by Cenzer, Downey, Jockusch and Shore in 1993. For the simplest new Π 0 1 class P constructed, P has a single, non-computable limit point and L(P)* has three elements, corresponding to $\emptyset$ , P and a minimal class P $_0 \subset$ P. The element corresponding to P 0 has no complement in the lattice. On the other hand, the theory of L(P) is shown to be decidable. A Π 0 1 class P is said to be decidable if it is the set of paths through a computable tree with no dead ends. We show that if P is decidable and has only finitely many limit points, then L(P)* is always a Boolean algebra. We show that if P is a decidable Π 0 1 class and L(P) is not a Boolean algebra, then the theory of L(P)interprets the theory of arithmetic and is therefore undecidable
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,365
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

5 ( #229,521 of 1,102,742 )

Recent downloads (6 months)

4 ( #84,424 of 1,102,742 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.