Analog vs. digital computation

Abstract
It is fairly well-known that certain hard computational problems (that is, 'difficult' problems for a digital processor to solve) can in fact be solved much more easily with an analog machine. This raises questions about the true nature of the distinction between analog and digital computation (if such a distinction exists). I try to analyze the source of the observed difference in terms of (1) expanding parallelism and (2) more generally, infinite-state Turing machines. The issue of discreteness vs continuity will also be touched upon, although it is not so important for analyzing these particular problems.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,825
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

231 ( #2,221 of 1,100,044 )

Recent downloads (6 months)

21 ( #9,689 of 1,100,044 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.