Analog vs. digital computation

It is fairly well-known that certain hard computational problems (that is, 'difficult' problems for a digital processor to solve) can in fact be solved much more easily with an analog machine. This raises questions about the true nature of the distinction between analog and digital computation (if such a distinction exists). I try to analyze the source of the observed difference in terms of (1) expanding parallelism and (2) more generally, infinite-state Turing machines. The issue of discreteness vs continuity will also be touched upon, although it is not so important for analyzing these particular problems.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

264 ( #4,578 of 1,726,249 )

Recent downloads (6 months)

16 ( #46,799 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.