Burgess's ‘scientific’ arguments for the existence of mathematical objects

Philosophia Mathematica 14 (3):318-337 (2006)
Abstract
This paper addresses John Burgess's answer to the ‘Benacerraf Problem’: How could we come justifiably to believe anything implying that there are numbers, given that it does not make sense to ascribe location or causal powers to numbers? Burgess responds that we should look at how mathematicians come to accept: There are prime numbers greater than 1010 That, according to Burgess, is how one can come justifiably to believe something implying that there are numbers. This paper investigates what lies behind Burgess's answer and ends up as a rebuttal to Burgess's reasoning.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,365
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

22 ( #79,412 of 1,102,812 )

Recent downloads (6 months)

1 ( #296,987 of 1,102,812 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.