Symbolic Connectionism in Natural Language Disambiguation

Abstract
��Natural language understanding involves the simul- taneous consideration of a large number of different sources of information. Traditional methods employed in language analysis have focused on developing powerful formalisms to represent syntactic or semantic structures along with rules for transforming language into these formalisms. However, they make use of only small subsets of knowledge. This article will describe how to use the whole range of information through a neurosymbolic architecture which is a hybridization of a symbolic network and subsymbol vectors generated from a connectionist network. Besides initializing the symbolic network with prior knowledge, the subsymbol vectors are used to enhance the system’s capability in disambiguation and provide flexibility in sentence understand- ing. The model captures a diversity of information including word associations, syntactic restrictions, case-role expectations, semantic rules and context. It attains highly interactive processing by representing knowledge in an associative network on which actual semantic inferences are performed. An integrated use of previously analyzed sentences in understanding is another important feature of our model. The model dynamically se- lects one hypothesis among multiple hypotheses. This notion is supported by three simulations which show the degree of disambiguation relies both on the amount of linguistic rules and the semantic-associative information available to support the inference processes in natural language understanding. Unlike many similar systems, our hybrid system is more sophisticated in tackling language disambiguation problems by using linguistic clues from disparate sources as well as modeling context effects into the sentence analysis. It is potentially more powerful than any systems relying on one processing paradigm.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,561
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Stuart C. Shapiro & William J. Rapaport (1992). The SNePS Family. Computers and Mathematics with Applications 23:243-275.
Brian R. Gaines (2009). Designing Visual Languages for Description Logics. Journal of Logic, Language and Information 18 (2):217-250.
Analytics

Monthly downloads

Added to index

2010-12-22

Total downloads

8 ( #167,561 of 1,098,129 )

Recent downloads (6 months)

1 ( #283,807 of 1,098,129 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.