Large-scale optimization of neuron arbors

At the global as well as local scales, some of the geometry of types of neuron arbors—both dendrites and axons—appears to be self-organizing: Their morphogenesis behaves like flowing water, that is, fluid dynamically; waterflow in branching networks in turn acts like a tree composed of cords under tension, that is, vector mechanically. Branch diameters and angles and junction sites conform significantly to this model. The result is that such neuron tree samples globally minimize their total volume—rather than, for example, surface area or branch length. In addition, the arbors perform well at generating the cheapest topology interconnecting their terminals: their large-scale layouts are among the best of all such possible connecting patterns, approaching 5% of optimum. This model also applies comparably to arterial and river networks. S1063-651X 99 16205-6..
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

19 ( #147,771 of 1,727,204 )

Recent downloads (6 months)

8 ( #84,767 of 1,727,204 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.