Generalized logical consequence: Making room for induction in the logic of science [Book Review]

Journal of Philosophical Logic 31 (3):245-280 (2002)
Abstract
We present a framework that provides a logic for science by generalizing the notion of logical (Tarskian) consequence. This framework will introduce hierarchies of logical consequences, the first level of each of which is identified with deduction. We argue for identification of the second level of the hierarchies with inductive inference. The notion of induction presented here has some resonance with Popper's notion of scientific discovery by refutation. Our framework rests on the assumption of a restricted class of structures in contrast to the permissibility of classical first-order logic. We make a distinction between deductive and inductive inference via the notions of compactness and weak compactness. Connections with the arithmetical hierarchy and formal learning theory are explored. For the latter, we argue against the identification of inductive inference with the notion of learnable in the limit. Several results highlighting desirable properties of these hierarchies of generalized logical consequence are also presented
Keywords deduction  induction  learning theory  logical consequence
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,986
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

10 ( #145,939 of 1,100,983 )

Recent downloads (6 months)

1 ( #290,065 of 1,100,983 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.